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Abstract

Binary black hole mergers are of great interest to the astrophysics community, 

not least because of their promise to test general relativity in the highly 

dynamic, strong field regime. Detections of gravitational waves from these 

sources by LIGO and Virgo have garnered widespread media and public 

attention. Among these sources, precessing systems (with misaligned black-

hole spin/orbital angular momentum) are of particular interest because of the 

rich dynamics they offer. However, these systems are, in turn, more complex 

compared to nonprecessing systems, making them harder to model or develop 

intuition about. Visualizations of numerical simulations of precessing systems 

provide a means to understand and gain insights about these systems. However, 

since these simulations are very expensive, they can only be performed at a 

small number of points in parameter space. We present binaryBHexp, a tool 

that makes use of surrogate models of numerical simulations to generate 

on-the-fly interactive visualizations of precessing binary black holes. These 

visualizations can be generated in a few seconds, and at any point in the 

7-dimensional parameter space of the underlying surrogate models. With 

illustrative examples, we demonstrate how this tool can be used to learn about 

precessing binary black hole systems.
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1. Introduction

The merger of two black holes (BHs) is one of the most violent events in the Universe. In the 

span of a few seconds, the incredible amount of energy  ∼1060 MeV [1] is liberated in gravi-

tational waves (GWs). These ‘ripples in spacetime’ travel across the Universe at the speed of 

light to our detectors, providing us unique insights into these spectacular astrophysical events.

The first direct detection [1] of GWs from a BH merger was achieved in 2015 by the LIGO 

[2] twin detectors. This is one of the greatest achievements in modern science, crowning dec-

ades of theoretical and experimental efforts in gravitational physics. The detection of GWs not 

only earned the 2017 Nobel Prize in physics [3], but also sparked an unprecedented interest 

in science among the general public. For a few days, BHs were on the front pages of most 

newspapers in the world!

Despite the immense technical difficulties in detecting them, astrophysical BHs are remark-

ably simple objects, characterized only by their mass and spin. From far away they can be 

thought of as the analogs of Newtonian point masses in Einstein’s general relativity (GR). 

Near a BH, departures from Newtonian gravity such as the event horizon, gravitational lens-

ing, gravitational time dilation, frame dragging, etc, become apparent.

When in a binary system, the departure is even more drastic. First, there are no stable binary 

orbits in GR: emission of GWs takes away energy, angular momentum, and linear momentum 

from the system, causing the binary’s orbit to shrink. Second, in Newtonian gravity, a point-

mass binary orbit that starts in the equatorial plane remains in the equatorial plane. In GR, on 

the other hand, if the BH spins are misaligned with respect to the orbital angular momentum, 

relativistic spin–spin and spin–orbit couplings cause the system to precess [4–7]. Much like 

a top whose spin axis is misaligned with the orbital angular momentum, the spins and the 

orbital angular momentum oscillate about the direction of the total angular momentum. This 

precession is imprinted on the observed gravitational waves as characteristic modulations of 

amplitude and frequency.

The evolution of a binary BH system can be divided into three stages: inspiral, merger, and 

ringdown. During the inspiral, the BHs gradually approach each other due to loss of energy 

and angular momentum to GWs. As they get closer, they eventually coalesce and merge. 

After the merger, one is left with a single, but highly distorted, BH. In the final stage, called 

ringdown, all these perturbations (‘hairs’) are radiated away and the remnant settles down to 

its final steady state. The remnant BH is characterized entirely by it mass, spin, and recoil 

velocity (or ‘kick’). These properties are associated with the asymptotic conservation laws of 

energy, angular momentum, and linear momentum, respectively.

Modeling GWs emitted during all three stages is crucial to interpreting observations from 

detectors like LIGO [2] and Virgo [8]. The merger phase, in particular, can only be captured 

accurately with expensive numerical-relativity (NR) simulations (see e.g. [9] for a review). 

Obtaining a single merger waveform prediction might take months of computational time on 

powerful supercomputers. Visualizations [10] of these simulations have been instrumental in 

disseminating GW discoveries for outreach and educational purposes. To some extent, experts 

in the field also rely on visual products to develop intuition and illuminate future directions 

for research. In particular, visualizations of precessing binary BHs can give valuable insights 

into their complex dynamics. Available visualizations directly rely on NR simulations, and 

are therefore restricted to the small number of configurations which have been simulated. 

Generating a new visualization at a generic point in parameter space would involve a new, 

expensive NR simulation.

In this paper, we present the ‘binary black hole explorer’ (binaryBHexp): a new tool to 

generate on-the-fly, yet accurate, interactive visualizations of precessing binary black hole 
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evolutions with arbitrary parameters. We rely on recent NR surrogate models. Trained against 

several hundreds of numerical simulations, these models have been shown to accurately model 

both the emitted gravitational waveform [11] and the BH remnant properties [12] of precess-

ing binary BH systems. With our easy-to-install-and-use Python package, one can generate 

visualizations within a few seconds on a standard, off-the-shelf, laptop computer. Some exam-

ples are available at vijayvarma392.github.io/binaryBHexp.

Figure 1 shows snapshots from a visualization generated with binaryBHexp . During the 

inspiral, both radiation reaction and spin precession are at play. While the separation shrinks 

because of GW emission, the orientations of the spins, and the orbital angular momentum, all 

vary in time. The GW emission frequency gradually scales as f ∼ r
−3/2

12 , and amplitude scales 

as h ∼ r−1
12 , where r12 is the binary separation, producing a distinctive ‘chirp’ where both fre-

quency and amplitude sweep up over time. GWs are emitted in two polarizations, h+ and h×
, 

as predicted by Einstein’s GR. As explored later, the relative amplitude of the two polariza-

tions crucially depends on orientation of the observer with respect to the binary. Spin preces-

sion causes amplitude modulations during the inspiral phase, which are also dependent on the 

observer orientation. After merger, the component BHs are replaced by a remnant BH, whose 

properties are determined by conservation laws, as mentioned above. The merger process 

emits copious gravitational radiation, and corresponds to the peak amplitude of the waveform.

The rest of the paper is organized as follows. Section 2 describes methods and approx-

imations employed to generate visualizations such as figure 1. In section 3, we demonstrate 

the power of this tool with several examples aimed at exploring known phenomenology in BH 

dynamics. Section 4 describes code implementation and usage. Finally, we provide conclud-

ing remarks in section 5.

2. Methods

2.1. Preliminaries

We start with some definitions, referring the reader to standard GR and GW textbooks for 

more details [13–18]. Throughout this paper, we use geometric units with G  =  c  =  1.

An isolated astrophysical BH is characterized entirely by its mass m and spin angular 

momentum S = χm2
· χ is the dimensionless spin, with magnitude χ � 1, and a = χm is 

the Kerr parameter.

A quasicircular precessing binary BH system is characterized by seven intrinsic param-

eters: mass ratio q = m1/m2, and two spin vectors χ1, χ2. Here, subscript 1 (2) corresponds 

to the heavier (lighter) of the two BHs. The total mass of the system M = m1 + m2 can be 

scaled out. Therefore, throughout this paper, all length and time quantities are in units of M. 

Similarly, all frequency quantities are in units of 1/M. After the merger takes place, the rem-

nant BH is characterized by its mass mf , spin χf  and recoil velocity vf .

If the BH spins are (anti-)aligned with respect to the orbital angular momentum L, the 

emitted GWs have monotonically increasing amplitude and frequency. Instead, if the comp-

onent spins are misaligned with respect to L, couplings between the momenta L, S1, and S2 

cause them to precess about the direction of the total angular momentum J = L + S1 + S2. 

GW amplitude and frequency are not monotonic, and their modulations strongly depend on 

the viewing angle [4]. This complexity can be in part removed by moving into a non-inertial 

reference frame which tracks the direction of L [19–21]. In this coprecessing frame, the wave-

form looks nearly as simple as that of a nonprecessing source (see bottom panel of figure 2), 

and can be modeled with methods developed to study nonprecessing systems.

V Varma et alClass. Quantum Grav. 36 (2019) 095007
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2.2. Surrogate models

NR surrogate models provide a fast-but-accurate method to model GW signals. We use a 

model developed by Blackman et al [11] named NRSur7dq2 to predict both the waveform and 

the BH spin dynamics. NRSur7dq2 was trained against 886 NR simulations in the 7-dimen-

sional parameter space of mass ratios q � 2, and dimensionless spin magnitudes χ1,χ2 � 0.8. 

NRSur7dq2 predicts both the emitted GWs and the associated BH spin dynamics. In par-

ticular, it models four important quantities that we make use of in this work: (i) the wave-

form modes hℓm expanded in spin-weighted spherical harmonics (see section 2.7); (ii) the 

unit quaternions Q̂(t) describing the rotation between the coprecessing frame and a specified 

inertial frame; (iii) the orbital phase in the coprecessing frame φorb; and (iv) the precession of 

component spins χ1, χ2 over time.

Modeling the BH remnant’s properties is performed with the surrogate surfinBH7dq2 [12], 

which was also trained on the same set of NR simulations. This model takes in mass ratio q 

Figure 1. Snapshots during the inspiral (top-left), post-ringdown (top-right), and 
intermediate (bottom) stages of a precessing binary BH evolution. Each BH horizon is 
represented by an oblate spheroid. The arrows on the BHs indicate the spin vectors; the 
larger the spin the longer the arrow. The arrow centered at the origin indicates the orbital 
angular momentum. On the bottom plane, we show the plus polarization of GWs, as 
seen by an observer at each point. Red (blue) colors indicate positive (negative) values. 
Notice the quadrupolar nature of the emitted waves. The subplots at the bottom of each 
panel show GW plus and cross polarizations, as seen by a far-away observer viewing 
from the camera viewing angle. The time to the peak of the waveform amplitude is 
indicated in the figure text as well as the slider in the bottom subplots. This animation 
is available at vijayvarma392.github.io/binaryBHexp/#prec_bbh as well as in the 
supplemental materials (stacks.iop.org/CQG/36/095007/mmedia).

V Varma et alClass. Quantum Grav. 36 (2019) 095007
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and component spin vectors χ1, χ2 at a given orbital frequency, and models the remnant mass 

mf , spin vector χf , and kick vector vf .

2.3. Black-hole shapes

In our visualizations, we represent BH horizons with ellipsoids of revolution. The axis of sym-

metry is along the instantaneous spin of the BH. The polar (along the axis) and the equatorial 

(orthogonal to the axis) horizon radii are set to

rpol = r+ , requi =
√

r2
+ + a2 , (1)

where r+ = m +
√

m2
− a2. rpol and requi correspond to the Kerr–Schild [18, 22] coordinate 

distances from the BH center to the pole/equator of the horizon. Note that numerical simula-

tions use a different coordinate system, meaning the BH shapes would be different even for an 

isolated BH. However, this captures the azimuthal symmetry and oblate nature seen in most 

coordinate systems.

This approximation, however, neglects much of the interesting phenomenology of event 

horizons (EHs) of BHs in binaries [15, 23, 24]. EHs are defined globally, so the locations 

of EHs cannot be determined without knowing the entire future development of a space-

time. Most NR simulations track the location of apparent horizons (AHs) [15], which can be 

defined locally. Both EHs and AHs of orbiting BHs are deformed by the tidal field of the other 

BH. This distortion becomes very strong close to merger, where the shape of the two EHs do 

not resemble, even vaguely, that of ellipsoids (see e.g. [25]). Improving our representation of 

EH shapes requires building surrogate models for the morphology of the EH/AH, which is an 

interesting avenue for future work.

In addition, we assume the masses of the BHs are constant during the evolution. While the 

masses in an NR simulation can change due to in-falling energy through GWs, this is a very 

Figure 2. Example of the real part of the (ℓ = 2, m = 1) spin-weighted spherical 
harmonic mode (see section 2.7) of the GW for a precessing black hole binary, in the 
inertial (top) and coprecessing (bottom) frames. t  =  0 corresponds to the peak of the 
waveform amplitude.

V Varma et alClass. Quantum Grav. 36 (2019) 095007
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small effect (4PN (Post Newtonian) higher than leading orbital energy loss [26–28]) that is 

safely ignored in current waveform models including NRSur7dq2.

2.4. Component black-hole spin evolution

The two spins χ1,χ2 are modeled using NRSur7dq2. These are known to agree well with 

NR simulations and are crucial for the accuracy of that waveform model [11]. Note, however, 

that the spins modeled by NRSur7dq2 have had an additional smoothing filter applied to 

remove short-timescale oscillations [11]. This approximation propagates to our visualizations. 

Similarly to the masses of the BHs, we assume the spin magnitudes are constant during the 

evolution. In-falling angular momentum in the form of GWs can alter the spin magnitudes, 

but this is also a very small effect (4PN higher than leading angular-momentum loss [27, 28]) 

that is ignored by current waveform models including NRSur7dq2.

Spins are represented as arrows centered at the BH centers, that are proportional to the Kerr 

parameter a of each BH. More specifically, the length is set to 10a, and the direction is along 

â. The exaggeration of the magnitude is necessary to make the spin vectors clearly visible 

during the evolution; more on this in the next section.

2.5. Orbital angular momentum

NRSur7dq2 only predicts the unit rotation quaternion Q̂(t) and not the magnitude L. The (time 

dependent) direction of orbital plane is inferred from Q̂(t) and is orthogonal to the z-axis of the 
coprecessing frame. For the magnitude L, we implement the Newtonian expression

L = M2 q

(1 + q)2
(Mωorb)

−1/3, (2)

where ωorb is the orbital frequency, as derived from the orbital phase in the coprecessing frame 

modeled by NRSur7dq2,

ωorb =
dφorb

dt
. (3)

In our visualizations, the angular momentum is indicated by an arrow at the origin. Its 

magnitude is rescaled to 12L. This factor is arbitrary and it is chosen to make the arrow clearly 

visible.

Note that it is not appropriate to compare an arrow for orbital angular momentum L ∝ M2 

to those representing the Kerr parameters a1, a2 ∝ M  because they have different dimensions. 

The choice of representing a, rather than the S ∝ M2 was made to allow all arrows to be 

clearly visible throughout the inspiral for generic locations in the parameter space (i.e. differ-

ent mass ratios). However, we provide an option to represent S for the spin arrows (see sec-

tion 4), in which case the arrow magnitudes are set to 12S. This makes the arrow on the smaller 

BH barely visible in some cases, but allows direct comparison of the spin arrows to the orbital 

angular momentum arrow. This could be informative for gaining intuition about peculiar spin 

phenomena like transitional precession [4, 29], spin orbit resonances [30], large nutations [31, 

32] and precessional instabilities [33]. This phenomenology is currently beyond the scope of 

the surrogate we used, but is being actively researched with NR simulations [34, 35] and lies 

within the realm of future hybridized surrogate models (see e.g. [36]).

V Varma et alClass. Quantum Grav. 36 (2019) 095007
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2.6. Component black-hole trajectories

The gauge symmetry of GR is broken in an NR simulation, since one necessarily has to spec-

ify a set of coordinates to represent the solution on a computer. The BH trajectories extracted 

from numerical simulations are, therefore, inherently gauge dependent.

In the construction of NRSur7dq2 [11] quantities like Q̂(t) and φorb are obtained from the 

GWs extrapolated to future null infinity, not from numerical simulations’ BH coordinates.

In our visualizations, we reconstruct the trajectories of the BHs using the dynamics pre-

dicted by NRSur7dq2 and some PN arguments. In particular, one needs the separation between 

the BHs as a function of the orbital frequency, r12(ωorb), with the orbital frequency defined as 

in equation (3). The separation r12(ωorb) is modeled using the 3.5PN expressions reported in 

equation (4.3) of [37], along with the 2PN spin–spin term from equation (4.13) of [5].

Let us write the coprecessing frame coordinates as (x′, y′, z′). The trajectories in the copre-

cessing frame, where the orbital plane is orthogonal to the z′-axis, are given by






x′1 = r1 cosφorb

y′1 = r1 sinφorb

z′1 = 0







x′2 = −r2 cosφorb

y′2 = −r2 sinφorb

z′2 = 0

 (4)

where r1 (r2) indicates the coordinate separation from the origin to the primary (secondary) 

BH center. We use the Newtonian relations

r1 =
m2

M
r12, r2 =

m1

M
r12, (5)

to enforce the Newtonian center-of-mass of the binary to be at the origin. This ignores the fact 

that true center of mass during inspiral and merger oscillates about the origin due to linear 

momentum carried away in GW. However, this correction would be too small to be noticeable 

on the scale of our visualizations (see e.g. figure 2 of [38]).

Given the trajectories in the coprecessing frame, the trajectories in the inertial frame are 

obtained by a quaternion transformation with the time-dependent rotation (unit) quaternions 

Q̂(t) (for a brief introduction to quaternions in this context, see e.g. appendix A of [39]). 

Treating the Euclidean positions as purely imaginary quaternions, the transformation is

xi = Q̂(t) x
′

i Q̂−1(t). (6)

Figure 3 compares the trajectories predicted by our method to the gauge-dependent ones 

extracted from an NR simulation. Our approximate trajectories turn out to be remarkably 

close to the NR trajectories. The dominant deviations are due to the PN formulae being in 

harmonic gauge, whereas the NR simulations use the damped harmonic gauge [40].

2.7. Gravitational waves

NR simulations predict the entire spacetime metric of a binary BH evolution. However, the 

full metric is usually discarded because most applications (notably GW observations) only 

require the gravitational waves as seen by an observer far away.

Indeed, splitting the metric into GWs and a non-oscillatory part can only be well defined 

in the wave zone, which is at distances r much larger than the gravitational wavelength λ. 

Let us suppose we are in a spacetime that is approximately Minkowski space, with a metric 

perturbation hab, in the transverse-tracefree (TT) gauge [41]. We define a spherical polar coor-

dinate system (t, r, θ,φ) with the binary center-of-mass at the origin. The z axis (θ = 0) of this 

coordinate system is parallel to L at some reference time/frequency. The x axis lies along the 

V Varma et alClass. Quantum Grav. 36 (2019) 095007
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line of separation from the lighter BH to the heavier BH at this time/frequency, and the y  axis 

completes the triad.

The spherically outgoing gravitational wave is typically converted into a spin-weight  −2 

complex scalar by contracting h ≡ habm̄am̄b, where ma = (êa
θ + iêa

φ)/
√

2  is an element of a 

complex null dyad [18] along with its conjugate m̄a; and where êa
θ, êa

φ are the standard unit 

vectors in the θ and φ directions, respectively. The gravitational-wave strain h is then decom-

posed as

h(t, r, θ,φ) =

∞∑

ℓ=2

ℓ∑

m=−ℓ

−2Yℓm(θ, φ) hℓm(t, r), (7)

where −2Yℓm  are the s=−2 spin-weighted spherical harmonics [42]. The functions hℓm are 

referred to as the modes of the GWs.

From the structure of the flat-space d’Alembertian operator, we can see that at large dis-

tances, h is dominated by a piece decaying as  ∼1/r along lines of constant retarded time 

tret ≡ t − r  [43]. This motivates how waves are extracted from NR. First, (rhℓm) is evaluated 

on spheres of various radii in the computational domain. This is then extrapolated to future 

null infinity, defining

Figure 3. Comparison of the coordinate trajectories of the heavier BH for a precessing 
binary BH, between NR, and our approximation using NRSur7dq2 and PN. t  =  0 
corresponds to the peak of the waveform amplitude. The mass ratio, and spins at 
t  =  −4500M are shown at the top of the plot.

V Varma et alClass. Quantum Grav. 36 (2019) 095007
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(rhℓm)
∞(t) ≡ lim

r→∞

r hℓm(t − r, r). (8)

NRSur7dq2 only models these extrapolated GW modes, (rhℓm)
∞.

One can evaluate the GWs at any particular orientation in the source frame at r → ∞ by 

applying equation (7) to (rhℓm)
∞(t). This is used to generate the waveform time series in the 

bottom subplots of our animations (see figure 1), where we show the plus h+ = ℜ(h) and 

cross h× = −ℑ(h) polarizations. We use all the spin-weighted spherical harmonic modes pro-

vided by NRSur7dq2, i.e. 2 � ℓ � 4 and |m| � ℓ.

Since the full metric is not available in the bulk, we approximate it from (rh)∞. When 

showing GWs on the bottom plane of our visualizations (see figure 1), we approximate the 

strain as

h(t, r, θ,φ) ≈
(rh)∞(tret, θ,φ)

r
. (9)

This neglects curved-background effects such as tails, and higher order 1/r corrections, so this 

approximation is only valid at large r. More work would be needed to recover the higher pow-

ers of 1/r, but it is technically possible (see equation (2.53a) of [43]). The default position of the 

bottom-plane is quite close to the binary; moving it farther out improves this approximation.

2.8. Post merger phase

In NR simulations, a common apparent horizon typically forms at a retarded time close to 

the peak of the waveform A2 =
∑

ℓ,m |hℓm|
2. This is taken to be the definition of the time of 

merger. We therefore shift the time variable t such that t=0 corresponds to maxt A. At t � 0, 

the two component BHs are replaced by a single remnant. The final mass, spin, and kick of the 

remnant are predicted using surfinBH7dq2 [12].

Mass and spins of the remnant are used to draw a horizon ellipsoid and spin arrow as speci-

fied in sections 2.3 and 2.4. The remnant BH horizon is expected to be highly distorted at the 

common horizon formation time. We ignore this effect and simply represent the remnant BH 

by an ellipsoid of constant shape from t=0 onwards.

During a BH inspiral and merger, linear momentum emitted in GWs causes motion of 

the binary’s center of mass (see e.g. [38] and references therein). In practice, however, lin-

ear momentum flux is negligible at early times and the ‘kick’ is only accumulated over the 

last few cycles before merger. Here we make the additional simplification of neglecting this 

effect, and assume that the remnant is formed at the origin and receives all of its kick velocity 

instantaneously. However, as mentioned before, this correction would be at a scale that is not 

noticeable in our visualizations (see figure 2 of [38]).

2.9. Time steps and displayed text

To better highlight different phases of the evolution, we use a non-uniform time step. The time 

step between frames at t � 75M is chosen to obtain 30 frames for each orbit. The animation, 

therefore, is artificially slowed down close to merger, so that the entire dynamics is easier to 

observe. After the ringdown stage, the animation is sped up to better illustrate the final kick. 

The current time is displayed in the figure text, as well as indicated by the blue vertical slider 

in the bottom waveform subplot (see figure 1).

V Varma et alClass. Quantum Grav. 36 (2019) 095007
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The figure text at the top-left of the main visualization panel shows the parameters of the 

binary (remnant). At times t  <  0, these are the mass ratio and instantaneous spin components. 

Mass, spin and kick of the remnant BH are shown after merger.

3. Explorations

We now provide additional examples that demonstrate the power and utility of our 

visualizations.

3.1. Waveform projection

Figure 4 shows a visualization of a precessing binary BH, when we also vary the camera view-

ing angle during the evolution. The polarization content and the morphology of the waveform 

therefore strongly depend on the direction of the line of sight, which can be understood as 

follows. From equation (7), the observer viewing angles (θ,φ) affect the relative weights with 

which the waveform modes hℓm are combined into the strain h. Note that the standard quadru-

pole formula for GW emission only contains the dominant ℓ= |m|=2 modes, while here we 

use all modes with ℓ � 4.

The GW amplitude is strongest along the direction of L. This is evident from the bot-

tom panel of figure 4, where the direction of L aligns with the observer’s viewing angle (i.e. 

the binary is face-on). On the other hand (top-left panel of figure 4) the GW amplitude is at 

its least when the observer viewing angle is orthogonal to L (edge-on). The contribution of 

higher harmonics ℓ > 2 to equation (7) also depends on observer viewing angle. For face-on 

binaries, the GWs are strongly dominated by the quadrupolar modes. Going from face-on to 

edge-on, the contribution of the quadrupolar modes decreases and that of the nonquadrupolar 

modes increases.

One can also infer the polarization content of the GWs from the waveform panel. If there 

is a ±90◦ phase shift between h+ = ℜ(h) and h× = −ℑ(h), the GWs are circularly polar-

ized. The bottom panel of figure 4, which is mostly face-on, shows almost perfect circular 

polarization, deviating due to precession of the orbital plane. For comparison, when h+ and 

h×
 are proportional with a real constant of proportionality, the GW has a linear polarization 

(this includes the simpler case where one of the two polarizations vanishes). The top-left 

panel of figure 4, where the system is (almost) edge-on, exhibits (almost) linear polarization 

at many times throughout the inspiral. Again the deviations are due to precession of the orbital 

plane. The modulation is more noticeable for nearly edge-on precessing systems, since one 

of the polarizations can temporarily vanish as the system precesses through perfectly edge-on 

configurations.

3.2. Orbital hang-up effect

Apart from precession, the BH spins have other important effects on the evolution of binaries. 

One such effect is the so called orbital hang-up effect [44–46] which delays or prompts the 

merger of the BHs based on the sign of the BH spin component along the orbital angular 

momentum, S · L, where S is one of S1 or S2. This spin–orbit coupling is a 1.5 PN effect that 

effectively acts as an additional repulsion (attraction) when the sign of S · L is positive (nega-

tive). This means that binaries that have spins that are aligned (anti-aligned) with L will merge 

slower (faster) than nonspinning binaries, when starting from the same orbital frequency. This 
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is analogous to the location of the innermost stable circular orbits of Kerr BHs, which is at a 

smaller (larger) radius for co-(counter-)rotating particles.

This is demonstrated in figure 5, which shows an aligned, nonspinning and an anti-aligned 

binary, starting at the same orbital frequency. Unlike the rest of the animations discussed in 

this paper, here we use a constant time step between the frames of the movie (rather than 

a fixed 30 frames per orbit), and set t  =  0 at the start of the waveform (rather than at the 

peak). Due to the orbital hang-up effect, the anti-aligned binary merges first, followed by the 

Figure 4. Visualization of a precessing binary black hole system where we also vary 
the camera viewing angle during the inspiral. Notice how the waveform structure in 
the bottom subplots changes based on whether the viewing angle is edge-on (top-
left), intermediate (top-right), or face-on (bottom). This animation is available at 
vijayvarma392.github.io/binaryBHexp/#prec_bbh_rotating_camera as well as in the 
supplemental materials.
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Figure 5. Visualization of the orbital hang-up effect. We show three nonprecessing 
systems with equal masses, and equal spins. In the left (right) column, both spins 
are aligned (anti-aligned) with L, with magnitude 0.8. The middle column shows a 
nonspinning binary. All three systems start at an orbital frequency of 0.018 rad/M. 
Due to orbital hang-up effect, the length of the waveform is longer (shorter) for the 
aligned case compared to the nonspinning case (see the bottom subplots showing the 
waveform). Time flows downwards (labeled at the left), and each row corresponds to a 
fixed time since the start of the animation. This animation is available at vijayvarma392.
github.io/binaryBHexp/#hangup as well as in the supplemental materials.
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nonspinning system, and finally the aligned system. In addition, the aligned (anti-aligned) 

binary radiates more (less) energy due to its prolonged (shortened) evolution, and the final 

mass is therefore smaller (larger) than the nonspinning case. The interaction between spin and 

orbital angular momentum also determines the remnant spin in a non-trivial way: the aligned 

(anti-aligned) case results in the largest (smallest) remnant spin magnitude.

The orbital hang-up effect can also be explained heuristically using the cosmic cen-

sorship conjecture. For the aligned-spin binary in figure  5, the initial magnitude of total 

angular momentum is given by J = L + m2
1 χ1 + m2

2 χ2. Using L from equation  (2) with 

ωorb = 0.018 rad/M, we get J ∼ 1.35M2. This is larger than the maximum allowed spin 

angular momentum for a Kerr BH, M2. On the other hand, for the anti-aligned case we have 

J = L − m2
1 χ1 − m2

2 χ2 ∼ 0.55M2, which is well within the limit. So, the aligned binary 

must radiate at least 0.35M2 of its total angular momentum in the form of GWs before it can 

merge, in order to not violate cosmic censorship. The anti-aligned case can therefore merge 

faster.

3.3. Super-kick

Next, we consider a binary BH in the so-called super-kick configuration. Anisotropic emis-

sion of GWs causes a net flux of linear momentum, which imparts a kick to the remnant 

BH. Some degree of asymmetry is necessary for a nonzero kick [47]. For instance the kick 

vanishes by symmetry during the merger of an equal-mass, nonspinning binary BH system. 

Strongly precessing binary BHs have been found to generate the highest kicks [48–50]. Some 

of these systems have kicks large enough to escape from even the most massive galaxies in 

the Universe [51, 52].

In particular, a vary large kick (up to  ∼3000 km s−1) is imparted to BHs merging with spins 

lying in the orbital plane and anti-parallel to each other. These are the so-called super-kicks 

first discovered in 2007 [48, 49], by means of NR simulations. The largest kicks observed in 

numerical simulations to date are the so-called hangup-kicks [50], where the spins have non-

zero components perpendicular to the orbital plane, but the in plane spins are anti-parallel. 

We will refer to all configurations where the spins near merger are coplanar, and their orbital 

plane projections are anti-parallel, as super-kick configurations. Crucially, large kicks are only 

found if the spins are in these fine-tuned configurations ‘near merger’.

For this reason, generating visualizations of BH super-kicks from simulations can be chal-

lenging. The spins are usually specified at the start of the simulations and several attempts are 

necessary to find the specific initial conditions that will result in co-planar spins near merger. 

With our tool, on the other hand, one can specify the spins at any time/frequency, including 

close to merger. Generating a visualization of a system in a super-kick configuration is as easy 

as any other location in parameter space. This is shown in figure 6. The remnant reaches a final 

velocity of  ∼10−2c (∼3000 km s−1), in agreement with [48–50].

3.4. Sinusoidal kick dependence

As suggested above, the remnant kick is quite sensitive to the angle between the spins close 

to merger. In particular, the component of the kick parallel to the orbital angular momentum 

has been found to depend sinusoidally on the orbital phase [38, 53]. Figure 7 demonstrates 

this effect. All five different cases have equal-mass BHs, with anti-parallel spins lying in the 

orbital plane at t  =  −100M. Each evolution is initialized with a different orbital phase or, 

equivalently, performing an overall rotation of the spins about the z-axis.
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As expected, the final BH kick changes dramatically with the initial orbital phase. Even 

visually, the kick dependence appears to be sinusoidal. This example demonstrates the poten-

tial of binaryBHexp  as a tool to perform detailed, but at the same time accessible, exploration 

of the phenomenology of precessing BH mergers.

Figure 6. Evolution of a super-kick configuration. Time flows from left to right and 
from top to bottom, as shown at the bottom left of each panel. The top-left panel shows 
a snapshot taken in the early inspiral. In the top-right panel, the two BHs are about 
to merge and the spins are are seen to be in a super-kick configuration. The bottom-
left snapshot is taken at the time at which the peak of the waveform hits the bottom 
plane where the GW pattern is shown. After merger (bottom-right panel), the final 
BH is imparted a kick of  ∼3000 km s−1 (note that we speed up the animation after 
the ringdown by increasing the time steps to 100M). This animation is available at 
vijayvarma392.github.io/binaryBHexp/#super_kick as well as in the supplemental 
materials.
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4. Public Python implementation

Our package is made publicly available through the easy-to-install-and-use Python package, 

binaryBHexp  [54]. Our code is compatible with both Python 2 and Python 3. The latest 

release can be installed from the Python package index using

    pip install binaryBHexp

This adds a shell command called binaryBHexp , which can be used to generate visualizations 

with invocation as simple as

    binaryBHexp  – –q 2 – –chiA 0.2 0.7 -0.1 – –chiB 0.2 0.6 0.1

Such an invocation yields a running movie that the user can interact with. By clicking and 

dragging on the movie as it plays, the user can change the viewing angle and the waveform 

time-series will update in real time as the viewing angle is manipulated. The full documenta-

tion for command-line arguments is available with the - -help flag.

As mentioned in section 2.5, the default setting for the spin arrows is to be proportional to 

the Kerr parameter of the BH, a. By passing the optional argument - -use_spin_angu-

lar_momentum_for_arrows to the above command, the spin arrows can be made pro-

portional to the spin angular momentum of the BH instead.

Python packages NRSur7dq2 [55] and surfinBH [56] are specified as dependencies and are 

automatically installed by pip if missing. binaryBHexp  is hosted on GitHub at github.com/

vijayvarma392/binaryBHexp, from which development versions can be installed. Continuous 

integration is provided by Travis [57]. More details about the Python implementation, as well 

Figure 7. Sinusoidal dependence of the kick magnitude on the angle between spins close 
to merger. Five different cases are shown (left to right), with equal masses and equal 
spins. Both spins are confined to the orbital plane, and are anti-parallel to each other, 
but with a different angle in the plane α (labeled at top), specified at t=−100M . Time 
flows downwards (labeled at left). The bottom panels show the sinusoidal dependence 
of the final kick magnitude on the initial orbital phase. This animation is available at 
vijayvarma392.github.io/binaryBHexp/#sine_kicks as well as in the supplemental 
materials.
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as animations corresponding to the examples discussed in this paper are available at vijay-

varma392.github.io/binaryBHexp.

5. Conclusion

We present a tool for visualizing mergers of precessing binary BHs. Rather than rely on expen-

sive numerical simulations, we base our animations on surrogate models of numer ical simula-

tions. These are inexpensive but very accurately reproduce numerical simulations. Therefore, 

we can generate visualizations anywhere in the parameter space of the underlying surrogate 

models, within a few seconds.

We make our code available through an easy-to-install-and-use python package 

binaryBHexp  [54]. We demonstrate the power of this tool by generating visualizations of 

several well known phenomena such as: spin and waveform modulations due to precession, 

orbital-hangup effect, super kicks, sinusoidal behavior of the remnant kick, etc. This tool can 

be used by researchers and students alike, to gain valuable insights into the highly complex 

dynamics of precessing binary BHs.
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